
 Java Au Naturel by William C. Jones 14-1 14-1

14 Stacks, Queues, And Linked Lists

Overview

This chapter requires that you have a solid understanding of arrays (Chapter Seven) and
have studied Exceptions (Section 10.2) and interfaces (Sections 11.1-11.3).

• Section 14.1 discusses situations in which stack and queues can be useful. We

define a stack to have the operations push(Object), pop(), peekTop(), and
isEmpty(). We define a queue to have the corresponding operations
enqueue(Object), dequeue(), peekFront(), and isEmpty().

• Sections 14.2-14.3 present implementations of stacks and queues using arrays. The
coding in these sections give you something to compare with the linked list coding
developed next, so you better understand linked lists.

• Section 14.4 introduces the concept of linked lists and uses them to implement
stacks and queues.

• Sections 14.5-14.7 implement a ListADT object as a linked list with trailer node, used
to implement stacks and queues and to perform additional list operations recursively.

• Sections 14.8-14.9 discuss other variations: linked lists with header nodes, doubly-
linked lists, circular linked lists, and even arrays of linked lists.

This chapter kills four birds with one stone: You develop a strong understanding of the
stacks and queues, you strengthen your abilities in working with arrays, you develop a
moderate facility with linked lists, and you learn to use recursion. But you only need
study the first five sections to be able to go further in this book.

14.1 Applications Of Stacks And Queues

Your in-basket on your desk at work contains various jobs for you to do in the near future.
Each time another job comes in, you put it on top of the pile. When you finish one job,
you take another job from the pile to work on. Which one do you take?

You can model this situation in software with an in-out data structure, an object that
contains several elements, allows you to add elements to it, and allows you to remove an
element from it when you wish.

• If you always take the job on top, you are following a Last-In-First-Out principle

(LIFO for short): Always take the job that has been in the pile for the shortest period
of time. A data structure that implements this principle is called a stack. However,
this principle may not be appropriate for a job-pile; some jobs may sit on the bottom
of the stack for days.

• If you always take the job on the bottom, you are following a First-In-First-Out
principle (FIFO for short): Always take the job that has been in the pile for the
longest period of time. A data structure that implements this principle is called a
queue. This principle guarantees that jobs do not sit overly long on the job-pile, but
you may end up postponing very important jobs while working on trivial jobs that
came in earlier.

• If you always take the job that has the highest priority, you are following a Highest-
Priority principle: Always take the job in the pile that has the highest priority rating
(according to whatever priority criterion you feel gives you the best chance of not
getting grief from your boss). A data structure that implements this principle is called
a priority queue. Priority queues will be discussed in Chapter Eighteen.

 Java Au Naturel by William C. Jones 14-2 14-2

Another example where a queue would be important is in storing information about
people who are waiting in line to buy tickets. Each new arrival goes to the rear of the
queue (the enqueue operation), and the next ticket sold goes to the person who comes
off the front of the queue (the dequeue operation).

If you are selling movie tickets, an ordinary queue is appropriate. But if they are tickets to
fly on an airline, a priority queue might be better: You would want to serve people whose
plane will be taking off within the hour before people who have longer to wait, and you
would want to serve first-class customers before customers buying the cheap tickets.

Stock market application of stacks

An investor buys and sells shares of stock in various companies listed in the stock
market. What if the person sells 120 shares of a particular company for $90 each at a
time when the person owns 150 shares, of which 50 shares were bought in January at
$60 each, 50 more in February at $70 each, and 50 more in March at $80 each? Which
of those particular shares are being sold?

The federal tax laws require this investor to compute the profit and loss on a LIFO basis,
i.e., the most recently purchased shares are sold first. So the profit on the sale is $500
on the 50 purchased in March, $1000 on the 50 purchased in February, and another
$600 (20 shares at $30 each) on shares purchased in January. Therefore, an
appropriate data structure for this situation is one stack of stock transactions for each of
the companies that the person owns stock in. For this particular example of selling 120
shares, the software would remove from the top of the stack the first three transactions
(the pop operation) and then add back the net transaction of 30 shares remaining at
$60 each (the push operation).

Software to update the current stock holdings for the investor could be based on
Transaction objects, each storing information about one stock transaction: company
name, number of shares, price per share, and date of purchase. A text file could hold
several lines of characters, each line giving the description of one transaction (a
purchase of stock). The investor could start the program (which reads in the text file),
enter several new buy-and-sell transactions, and then exit the program (which writes the
updated information to a text file). A more detailed design is given in the accompanying
design block.

STRUCTURED NATURAL LANGUAGE DESIGN for stock transactions
1. Read the "transact.dat" file into an array of stacks, one stack per company.
2. Repeat as long as the user has more transactions to process...
 2a. Get the next transaction from the user (buy or sell).
 2b. Modify the information in the array of stacks accordingly.
3. Write the updated information to a file.

The left side of Figure 3.1 shows a sequence of Push and Pop operations for a stack,
starting from an empty stack. The right side of the figure shows a sequence of Enqueue
and Dequeue operations for a queue, starting from an empty queue.

 Figure 14.1 Effect of method calls for stacks and queues

 Java Au Naturel by William C. Jones 14-3 14-3

Some other applications of stacks

You may need a program that reads in several lines of input, each containing what is
supposed to be a properly-formed expression in algebra, and tells whether it is in fact
legal. The expression could have several sets of grouping symbols of various kinds, ()
and [] and { }. Part of the parsing process is to make sure that these grouping
symbols match up properly. The accompanying design block could be part of the logic
for processing the algebraic expression.

STRUCTURED NATURAL LANGUAGE DESIGN for grouping symbols
1. Get the next character on the input line; call it the currentChar.
2. If the currentChar is one of '(', '[', or '{', then...
 Push the currentChar on the stack.
3. Otherwise, if the currentChar is one of ')', ']', or '}', then...
 3a. If the stack is empty then...
 Conclude that this is not a properly-formed expression.
 3b. Pop the top character from the stack.
 3c. If that is not the other half of the currentChar, then...
 Conclude that this is not a properly-formed expression.
4. Otherwise [additional logic for other characters]...

A Java compiler uses a stack to handle method calls, which works roughly as follows
(very roughly), assuming calls is the stack of method calls and an Activation object
keeps track of information for one method call:

• x = doStuff(y) causes calls.push (new Activation (arguments));
• z = 3 for a local variable z causes calls.peekTop().setVariable(z, 3);
• return 5 causes calls.pop(); x = 5.

Stack and queue interfaces

We will develop several different implementations of stacks and queues in this chapter.
We specify what is common to all by defining interfaces. An interface describes what
operations the object can perform but does not give the coding. So it describes an
abstract data type. We call these two interfaces StackADT and QueueADT. They are
shown in Listing 14.1 (see next page). Each has an operation to add an element to the
data structure (push and enqueue), an operation to remove an element (pop and
dequeue, which return the element removed), and two query methods: an operation to
see what would be removed (peekTop and peekFront), and an operation to tell
whether the data structure has any elements to remove (isEmpty).

We later develop coding for ArrayQueue, an implementation of QueueADT, and
ArrayStack, an implementation of StackADT. As an example of how their methods can
be used, the following is an independent method that reverses the order of the elements
on a given stack, using a queue for temporary storage (independent simply means that
the method works right no matter what class it is in). The coding removes each value
from the stack and puts it on the queue, with what was on top of the stack going to the
front of the queue. Then it removes each value from the queue and puts it on the stack.
So the value that was originally on top of the stack ends up on the bottom of the stack:

 public static void reverse (StackADT stack)
 { QueueADT queue = new ArrayQueue();
 while (! stack.isEmpty())
 queue.enqueue (stack.pop());
 while (! queue.isEmpty())
 stack.push (queue.dequeue());
 } //======================

 Java Au Naturel by William C. Jones 14-4 14-4

Listing 14.1 The StackADT and QueueADT interfaces

public interface StackADT // not in the Sun library
{
 /** Tell whether the stack has no more elements. */

 public boolean isEmpty();

 /** Return the value that pop would give, without modifying
 * the stack. Throw an Exception if the stack is empty. */

 public Object peekTop();

 /** Remove and return the value that has been in the stack the
 * least time. Throw an Exception if the stack is empty. */

 public Object pop();

 /** Add the given value to the stack. */

 public void push (Object ob);
}
//##

public interface QueueADT // not in the Sun library
{
 /** Tell whether the queue has no more elements. */

 public boolean isEmpty();

 /** Return the value that dequeue would give without modifying
 * the queue. Throw an Exception if the queue is empty. */

 public Object peekFront();

 /** Remove and return the value that has been in the queue the
 * most time. Throw an Exception if the queue is empty. */

 public Object dequeue();

 /** Add the given value to the queue. */

 public void enqueue (Object ob);
}

The rest of the examples in this section are not used elsewhere in this book, so you could
skip them. But even if your instructor does not assign them for study, you should at least
skim through them to get a better feeling for the various problems that stacks and queues
can help you solve.

 Java Au Naturel by William C. Jones 14-5 14-5

The classic Tower of Hanoi problem

You are given three stacks A, B, and C. Initially, B and C are empty, but A is not. Your
job is to move the contents of A onto B without ever putting any object x on top of another
object that was above x in the initial setup for A. Can you see how the following coding
solves this problem, if it is called with n initially equal to A's size?

 public void shift (int n, StackADT A, StackADT B, StackADT C)
 { if (n == 1)
 B.push (A.pop());
 else
 { shift (n - 1, A, C, B); // n-1 go from A onto C
 B.push (A.pop());
 shift (n - 1, C, B, A); // n-1 go from C onto B
 }
 } //======================

Anagrams

An interesting problem is to print out all the anagrams of a given word. That is, given an
N-letter word with all letters different, print all the "words" you can form using each letter
once, regardless of whether they are actual words in some language. The number of
such rearrangements is N-factorial where N is the number of letters. The problem can be
solved in several different ways, one of which uses one queue and one stack. We
illustrate the process here and leave the coding as a major programming project.

Say the word is abcdefgh and you have just printed ehcgfdba. The very next word in
alphabetical order that you can form with those eight letters is ehdabcfg (compare the two
to see why). The way one iteration of the main loop of the process goes from a stack
containing ehcgfdba to that same stack containing ehdabcfg is as follows:

Initially you have the letters on the stack in reverse order, and you have an empty queue:
1. Repeatedly pop a value from the stack and enqueue it on the queue, stopping as soon
as you pop a value that comes alphabetically before the one you just enqueued. Call that
value the "pivot".
2. Repeatedly dequeue a value and enqueue it, stopping as soon as you dequeue a
value that comes alphabetically after the pivot. Push that value onto the stack.
3. Enqueue the pivot, then repeatedly dequeue a value and enqueue it, stopping as soon
as you dequeue a value that is alphabetically before the pivot. Push it onto the stack.
4. Repeatedly dequeue a value from the queue and push it on the stack until the queue
is empty.

Evaluating postfix expressions

Some calculators require you to enter arithmetic expressions in postfix notation. An
arithmetic postfix expression is a sequence of numbers and operators + - * / %
where each operator is placed directly after the two values it is to operate on. Some
examples of postfix expressions and the corresponding expressions in the normal infix
notation that you are used to are as follows:

postfix notation infix notation (fully parenthesized)
7 2 - (7 - 2)
3 4 + 5 * (3 + 4) * 5)
3 4 5 * + (3 + (4 * 5))
3 7 + 8 2 / - ((3 + 7) - (8 / 2))
3 4 2 6 3 / - * + (3 + (4 * (2 - (6 / 3))))

The reverse notation, where the operator comes directly before the two values it is to
operate on, is called prefix notation. It is used in the Scheme programming language.

 Java Au Naturel by William C. Jones 14-6 14-6

Assume that an input string containing an arithmetic postfix expression has been read
and separated into numbers and operators stored on a queue in order. The numbers are
stored as Integer objects (with an intValue method for getting the value) and the
operators are stored as Character objects (with a charValue method for getting the
value). Then the accompanying design block is logic for evaluating the expression. The
method in the upper part of Listing 14.2 (see next page) applies this algorithm. It throws
an Exception if the data values in the queue do not form a legal postfix expression.

STRUCTURED NATURAL LANGUAGE DESIGN for evaluating a postfix expression
1. Create a stack for storing numbers not yet combined with other numbers.
2. For each value you remove from the queue do...
 If it is a number then...
 Push it onto the stack.
 Otherwise, it is an operator, so...
 Pop the top two stack values and apply the operator to them.
 Push the result onto the stack.
3. Return the one remaining number on the stack.

Converting infix notation to postfix notation

Modern compilers usually process the normal infix expressions you write in your
programs to produce the corresponding postfix expressions in the compiled code. That
makes it much easier for the runtime system to evaluate the expressions. The full
evaluation algorithm is far too complex to present here. But a method that does the job
for the special case of a fully parenthesized numeric expression is not too hard.

Assume that an input string containing a fully parenthesized normal infix expression has
been read and separated into numbers and operators. They have been placed in a queue
in the order they were read, stored as Integer objects and Character objects. Then a
method for creating a new queue containing the corresponding postfix expression
(suitable for input to the preceding method) is in the lower part of Listing 14.2. It puts all
operators on a stack (line 32) and pops them when the expression is complete (line 30).

This independent method relies on two facts about postfix expressions: (1) Each
operator must be moved to the point in the sequence where the right parenthesis that
belongs to it occurs; (2) if several operators are "waiting" for their right parentheses, the
next one to come along belongs to the most-recently-seen operator. You can verify
these facts for the examples of postfix expressions shown earlier in this section.

Note: A precondition for all exercises in this chapter is that all stack, queue, and list
parameters of methods are non-null.

Exercise 14.1 Write an independent method public static Object
removeSecond (StackADT stack): It removes and returns the element just below
the top element if the stack has at least two elements, otherwise it simply returns null
without modifying the stack.
Exercise 14.2 Compute the values of these two postfix expressions. Also write these
two postfix expressions in ordinary algebraic notation without evaluating any of the parts:
(a) 12 10 3 5 + - / (b) 5 4 - 3 2 - 1 - -
Exercise 14.3 (harder) Write an independent method public static void
removeDownTo (StackADT stack, Object ob): It pops all values off the stack
down to but not including the first element it sees that is equal to the second parameter.
If none are equal, leave the stack empty. The ob parameter could be null.
Exercise 14.4 (harder) Write an independent method public static Object
removeSecond (QueueADT queue): It removes and returns the element just below
the top element. Precondition: The queue has at least two elements. Hint: Create a
new object totally different from any that could possibly be on the queue.

 Java Au Naturel by William C. Jones 14-7 14-7

Listing 14.2 Independent methods for postfix expressions

 public static int evaluatePostfix (QueueADT queue)
 { StackADT stack = new ArrayStack(); //1
 while (! queue.isEmpty()) //2
 { Object data = queue.dequeue(); //3
 if (data instanceof Integer) //4
 stack.push (data); //5
 else //6
 { char operator = ((Character) data).charValue(); //7
 int second = ((Integer) stack.pop()).intValue(); //8
 int first = ((Integer) stack.pop()).intValue(); //9
 if (operator == '+') //10
 stack.push (new Integer (first + second)); //11
 else if (operator == '-') //12
 stack.push (new Integer (first - second)); //13
 //etc. //14
 } //15
 } //16
 int valueToReturn = ((Integer) stack.pop()).intValue();//17
 if (! stack.isEmpty()) //18
 throw new RuntimeException ("too many values"); //19
 return valueToReturn; //20
 } //======================

 public static QueueADT fromInfixToPostfix (QueueADT queue)
 { QueueADT postfix = new ArrayQueue(); //21
 StackADT stack = new ArrayStack(); //22
 while (! queue.isEmpty()) //23
 { Object data = queue.dequeue(); //24
 if (data instanceof Integer) //25
 postfix.enqueue (data); //26
 else // it is a parenthesis or an operator //27
 { char nonNumber = ((Character) data).charValue(); //28
 if (nonNumber == ')') //29
 postfix.enqueue (stack.pop()); //30
 else if (nonNumber != '(') // ignore left paren //31
 stack.push (data); //32
 } //33
 } //34
 return postfix; //35
 } //======================

Exercise 14.5* Write an independent method public static void transfer
(StackADT one, StackADT two): It transfers all elements in the first parameter
onto the top of the second parameter, keeping the same order. So what was initially on
top of one ends up on top of two. Hint: Use a third stack temporarily.
Exercise 14.6* Write an independent method public static void reverse
(QueueADT queue): It reverses the order of the elements on the queue.
Exercise 14.7** Write an independent method public static void removeBelow
(QueueADT queue, Object ob): It removes all values from the queue that come
after the first element it sees that is equal to the second parameter. If none are equal,
leave the queue as it was originally.
Exercise 14.8** Write an independent method named interchange: You have two
StackADT parameters. All the items on each stack are to end up on the other stack in
the same order, so that each stack has the items that the other stack had at the
beginning. Use only one additional temporary stack.

 Java Au Naturel by William C. Jones 14-8 14-8

14.2 Implementing Stacks With Arrays

Our ArrayStack implementation of StackADT stores values in a partially-filled array: We
use an array itsItem of Objects and an int value itsSize that tells how many
elements the stack has. We store the elements in indexes 0 through itsSize-1. The
pop method tells the executor (i.e., the ArrayStack object carrying out the task) to
decrement itsSize and then return the value at index itsSize. To push an
element onto the stack, the executor puts the new element at index itsSize and then
increments itsSize (just the opposite of pop). This logic is in Listing 14.3.

Removing an element or peeking at an element requires that there be an element in the
data structure, so these methods first make sure that the stack is not empty. If it is empty,
a runtime Exception is to be thrown. The obvious choice is an IllegalStateException
(from java.lang). To throw the Exception, all you need do is execute the following
statement. It immediately terminates execution of the method it is in:

 throw new IllegalStateException ("some explanatory message");

Listing 14.3 The ArrayStack class of objects

public class ArrayStack implements StackADT
{
 private Object[] itsItem = new Object [10];
 private int itsSize = 0;

 public boolean isEmpty()
 { return itsSize == 0;
 } //======================

 public Object peekTop()
 { if (isEmpty())
 throw new IllegalStateException ("stack is empty");
 return itsItem[itsSize - 1];
 } //======================

 public Object pop()
 { if (isEmpty())
 throw new IllegalStateException ("stack is empty");
 itsSize--;
 return itsItem[itsSize];
 } //======================

 public void push (Object ob)
 { if (itsSize == itsItem.length)
 { Object[] toDiscard = itsItem;
 itsItem = new Object [2 * itsSize];
 for (int k = 0; k < itsSize; k++)
 itsItem[k] = toDiscard[k];
 }
 itsItem[itsSize] = ob;
 itsSize++;
 } //======================
}

 Java Au Naturel by William C. Jones 14-9 14-9

When the ArrayStack object is first created, it starts with an array of size 10 (an arbitrary
choice). Adding an element requires that there be room in the array. If not, you have to
make the array bigger to hold the added element. Since you cannot simply add more
components to an existing array, you create a new array that is twice as large and
transfer the data to that other array. It becomes the new itsItem array. Figure 14.2 is
the UML class diagram for the ArrayStack class.

 Figure 14.2 UML class diagram for the ArrayStack class

The internal invariant of a class of objects is the condition that (a) each method ensures
is true when the method exits, so that (b) each method can rely on it being true when the
method starts execution, because (c) no outside method can change things so that the
condition becomes false (due to encapsulation). The purpose of an internal invariant is to
describe the relationship of the abstract concept to the state of the instance variables
(and sometimes class variables). The ArrayStack class implements the abstract concept
of a stack as follows:

Internal invariant for ArrayStacks
• The int value itsSize is the number of elements in the abstract stack. These

elements are stored in the array of Objects itsItem at the components indexed 0
up to but not including itsSize.

• If the stack is not empty, the top element of the stack is at index itsSize-1.
• If k is any positive integer less than itsSize, then the element at index k-1 is

the element that will be on top of the stack immediately after popping off the element
at index k.

Linked-arrays implementation for faster execution

This array implementation requires copying many data values when the array was not
initially big enough. But it can waste space if the array was initially too big. There is a
way to avoid both these problems of execution time and space usage, but it requires a
little more programmer effort. Specifically, when the array fills up, make another array of
equal size and put the additional data values there, without discarding the original array.

Of course, you have to keep track of the "old" array somehow. Since an array is a kind of
Object, and the new array has components for storing Objects, you can use one of those
components in the new array to store a reference to the old array. For the ArrayStack
push method in Listing 14.3, you could replace its if-statement by the following:

 if (itsSize == itsItem.length - 1)
 { Object toSave = itsItem;
 itsItem = new Object [itsSize + 1];
 itsItem[itsSize] = toSave;
 itsSize = 0;
 }

You need a corresponding change in the pop method: When the current array is
empty, check to see if there is another "older" array and, if so, go on to that one. You
could simply replace the coding of Listing 14.3's pop method by the following coding:

 Java Au Naturel by William C. Jones 14-10 14-10

 if (itsSize == 0)
 { itsSize = itsItem.length - 1;
 itsItem = (Object[]) itsItem[itsSize];
 }
 itsSize--;
 return itsItem[itsSize];

Technical Note This coding throws a NullPointerException if there is no older array,
since then itsItem becomes null. However, this is precisely what the specifications
call for -- they do not require that an IllegalStateException be thrown, only that some
RuntimeException be thrown. And this coding saves time as compared with an explicit
test. But if you insist on throwing the "right" kind of Exception, use a try/catch statement
to catch the "undesirable" one and then throw an IllegalStateException in its place.

Efficiency

The previous discussion brings up an important point: Efficiency is not a matter of
execution time alone; it is a combination of space, time, and programmer effort. Coding
that executes faster may be less efficient if it uses more space or requires more effort by
the programmer and by any future maintainer of the program. You have to consider all
three of these factors in determining the efficiency of an algorithm.

There is a lot to be said for making efficiency the last consideration in developing
software. Specifically, the first goal as you develop should be clarity of expression (make
it easy to understand). The second goal should be correctness (avoid bugs). The third
goal should be efficiency (make it fast or space-saving if the effort to do so is worth it).

Putting clarity first simply means that you work on keeping the coding clear as you
develop it, rather than writing sloppily and cleaning it up later. You will find it much easier
to write correct and efficient coding if you strive for clarity from the beginning.

Making your coding correct before you try for efficiency implies that you often choose the
simplest way to get something done, as long as it works right. You may then come back
to it and make it more efficient in terms of time and space (i.e., speed of execution or low
use of RAM). One advantage is that you may then spot some bugs you missed the first
time through. Moreover, it is well known that usually only about 10% of the coding is
responsible for about 90% of the execution time, so you only have to work on a small part
of the coding. This leaves the rest simple and straightforward, so that it will be easier to
maintain in the future.

Another advantage is that, if your boss forces you to deliver the product before you have
finished it, it is better to deliver a correct but slow version than a fast but buggy version.
Slowness will irritate customers, but some bugs can kill people in certain software (e.g.,
for medical or military purposes). In such cases, delivering buggy software is unethical.

Exercise 14.9 How would the coding change in Listing 14.3 if you decided to have an
instance variable itsTop keep track of the index of the top element (using -1 when the
stack is empty), instead of using itsSize to keep track of the number of elements?
Exercise 14.10 (harder) Add a method public boolean equals (Object ob) to
the ArrayStack class: The executor tells whether ob is an ArrayStack whose elements
are equal to its own in the same order. Do not throw any Exceptions.
Exercise 14.11* Add a method public int search (Object ob) to the
ArrayStack class: The executor tells how many elements would have to be popped to
have ob removed from the stack; it returns -1 if ob is not in the stack.
Exercise 14.12* Write the isEmpty and peekTop methods for the linked-arrays
approach to implementing a stack described in this section, without changing itsItem.

 Java Au Naturel by William C. Jones 14-11 14-11

14.3 Implementing Queues With Arrays

You could implement QueueADT the same way as Listing 14.3 except that elements are
removed at the other end of the array from that on which elements are added. So you
could code enqueue the same as push but code dequeue as follows:

 public Object dequeue() // in a simplistic implementation
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 Object valueToReturn = itsItem[0];
 for (int k = 1; k < itsSize; k++)
 itsItem[k - 1] = itsItem[k];
 itsSize--;
 return valueToReturn;
 } //======================

Note that the for-statement copies the contents of itsItem[1] into the variable
itsItem[0], then the contents of itsItem[2] into itsItem[1], etc. Copying in
the opposite order would lose information. That is why the value to return is saved in a
local variable before moving values down.

Leave the coding of isEmpty unchanged. The coding of peekFront is the same as
peekTop except you return itsItem[0]. That completes the rather inefficient "move-
them-all" implementation of QueueADT.

A better implementation of queues

The implementation of queues just described is very wasteful of execution time. If for
instance the queue normally has around 100 elements in it, then each call of dequeue
requires shifting 100 values around.

A better way is to keep track of two places in the array, the index of the front of the queue
and the index of the rear of the queue. Call these instance variables itsFront and
itsRear. Forget about itsSize. You add values at the rear and remove them at the
front of the queue (except of course you cannot remove anything from an empty queue).
So peekFront returns itsItem[itsFront]. The implementation of dequeue in
this ArrayQueue class is as follows. Note that it corresponds line-for-line with
ArrayStack's pop:

 public Object dequeue() // in ArrayQueue
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 itsFront++;
 return itsItem[itsFront - 1];
 } //=======================

Say itsFront is 10. Then if itsRear is 12, the queue has three values in it (at
components 10, 11, and 12). If itsRear is 10, the queue has one value in it (at
component 10). In general, the number of values in the queue is itsRear -
itsFront + 1. So how do you tell when the queue is empty? When this expression
has the value zero, namely, when itsRear is 1 less than itsFront. Since you should
add the first element at index 0 for a newly created queue, itsFront should initially be
0, which means that itsRear must initially be -1 (1 less than itsFront because the
queue is initially empty). This coding is in the upper part of Listing 14.4 (see next page).

 Java Au Naturel by William C. Jones 14-12 14-12

Listing 14.4 The ArrayQueue class of objects

public class ArrayQueue implements QueueADT
{
 private Object[] itsItem = new Object [10];
 private int itsFront = 0; //location of front element, if any
 private int itsRear = -1; //location of rear element, if any

 public boolean isEmpty()
 { return itsRear == itsFront - 1;
 } //======================

 public Object peekFront()
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 return itsItem[itsFront];
 } //======================

 public Object dequeue()
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 itsFront++;
 return itsItem[itsFront - 1];
 } //======================

 public void enqueue (Object ob)
 { if (itsRear == itsItem.length - 1)
 adjustTheArray();
 itsRear++;
 itsItem[itsRear] = ob;
 } //======================

 private void adjustTheArray()
 { if (itsFront > itsRear / 4)
 { itsRear -= itsFront;
 for (int k = 0; k <= itsRear; k++)
 itsItem[k] = itsItem[k + itsFront];
 itsFront = 0;
 }
 else
 { Object[] toDiscard = itsItem;
 itsItem = new Object [2 * itsRear];
 for (int k = 0; k <= itsRear; k++)
 itsItem[k] = toDiscard[k];
 } // automatic garbage collection gets rid of toDiscard
 } //======================
}

The enqueue method

The basic logic of the enqueue method is to increment itsRear and put the given
value at that component:

 itsRear++;
 itsItem[itsRear] = ob;

 Java Au Naturel by William C. Jones 14-13 14-13

But you have a problem: What if itsRear is already up to itsItem.length - 1
and so there is no room to add the new value? This will happen once the number of calls
of enqueue is itsItem.length. There are two possibilities when in this case:
Either the array has plenty of room at the lower indexes or it does not. In the former case,
you have a simple solution: Just move all the values back down to the front of the array
en masse. We choose to do this as long as the array is no more than three-quarters full:

 if (itsFront > itsRear / 4)
 { for (int k = 0; k <= itsRear - itsFront; k++)
 itsItem[k] = itsItem[k + itsFront];
 }

Check that these values are correct: Clearly the first iteration moves the front value in
itsItem[itsFront] down to itsItem[0]. And the last iteration moves
itsItem[itsRear - itsFront + itsFront], which is itsItem[itsRear],
which of course should be the last one moved. And it is moved down to
itsItem[itsRear - itsFront]. This illustrates a key technique for verifying that a
for-statement is correct: Calculate what happens on the first and last iteration; otherwise
it is easy to be "off by one". Since the position of the values in the queue has changed,
you also have to update two instance variables:

 itsRear -= itsFront;
 itsFront = 0;

But what if the array is nearly full when you are called upon to add another value? You
simply do what was done in the earlier Listing 14.3 for ArrayStack: Transfer all the
elements to another array that is twice as large. This coding is in the lower part of Listing
14.4. Handling the case when itsRear reaches the rear of the array is in a separate
private method because it would otherwise obscure the basic logic of enqueue.

Another popular way of implementing a queue avoids all movement of data except when
the queue is full: When itsRear == itsItem.length - 1 but itsFront is at
least 2, add the next value at index 0. That is, the rear starts over from zero, leaving the
front where it was. Double the size of the array only when the element you are adding
would fill the array (do not wait until after it is full). This "avoid-all-moves" approach is
harder to understand and code than the "move-when-forced" approach used for Listing
14.4, but it executes somewhat faster.

Exercise 14.13 Add a method public int size() to the ArrayQueue class: The
executor tells the number of values currently in the queue.
Exercise 14.14 Add a method public String toString() to the ArrayQueue
class: The executor returns the concatenation of the string representation of all elements
currently in the queue with a tab character before each element, in order from front to
rear. This is very useful for debugging purposes.
Exercise 14.15 (harder) Write a method public void removeAfter (Object ob)
that could be added to ArrayQueue: The executor removes all values from the queue
that come after the element closest to the rear that is equal to the parameter. If none are
equal, leave the queue as it was originally. Handle ob == null correctly.
Exercise 14.16* Add a method public boolean equals (Object ob) to the
ArrayQueue class: The executor tells whether ob is an ArrayQueue with whose
elements are equal to its own in the same order. Do not throw any Exceptions.
Exercise 14.17* Add a method public void clear() to the ArrayQueue class: The
executor deletes all the elements it contains, thereby becoming empty.
Exercise 14.18* Write out the internal invariant for ArrayQueues.
Exercise 14.19** Rewrite Listing 14.4 to "flip the array over": Store the front value
initially at index itsItem.length-1 and have itsRear move toward index 0.
Exercise 14.20** Write the method public Object dequeue() for the "avoid-all-
moves" method of implementing QueueADT.

 Java Au Naturel by William C. Jones 14-14 14-14

14.4 Implementing Stacks And Queues With Linked Lists

We next implement a StackADT object as a linked list of Nodes. A Node object stores
two pieces of information: a reference to a single piece of data of type Object and a
reference to another Node object. If for instance you want to represent a sequence of
three data values as a linked list of Nodes, you put the three data values in three different
Node objects and have the first Node refer to the second Node, the second Node refer to
the third, and the third Node not refer to any Node at all.

The Node class

The Node class is defined in Listing 14.5. A Node object's data is referenced by itsData
and the Node that comes next after it in the linked list is referenced by itsNext.

Listing 14.5 The Node class

public class Node
{
 private Object itsData;
 private Node itsNext;

 public Node (Object data, Node next)
 { itsData = data;
 itsNext = next;
 } //======================

 /** Return the data attribute of the Node. */

 public Object getValue()
 { return itsData;
 } //======================

 /** Return the next attribute of the Node. */

 public Node getNext()
 { return itsNext;
 } //======================

 /** Replace the data attribute of the Node. */

 public void setValue (Object data)
 { itsData = data;
 } //======================

 /** Replace the next attribute of the Node. */

 public void setNext (Node next)
 { itsNext = next;
 } //======================
}

 Java Au Naturel by William C. Jones 14-15 14-15

The following statements create a linked list of Nodes having the words "the", "linked",
"list" in that order. The first statement creates a Node object in nodeA whose data
value is "list" and which is linked up to no node (indicated by having itsNext be null).
The second statement creates another Node object in nodeB which is linked up to
nodeA. The third statement creates another Node object in nodeC which is then linked
up to the second node, nodeB. Figure 14.3 shows how the list will look when it is done:

 Node nodeA = new Node ("list", null);
 Node nodeB = new Node ("linked", nodeA);
 Node nodeC = new Node ("the", nodeB);

 Figure 14.3 UML object diagram of three nodes in a linked list

Nodes in a NodeStack object

We will create an implementation of StackADT named NodeStack. A NodeStack object
will have an instance variable itsTop for the first Node object on its list. Initially
itsTop is null, which is a signal that the stack is empty (after all, you cannot have any
data without a Node to put it in). Suppose a particular NodeStack object has a linked list
of two or more Nodes. Coding to swap the two data values in the first two Nodes could
be as follows (the last two statements change only the data attribute of the Node):

 Object saved = itsTop.getValue();
 Node second = itsTop.getNext();
 itsTop.setValue (second.getValue());
 second.setValue (saved);

Coding to add a new data value "sam" at the beginning of a list could be as follows.
Actually, this coding will work even when the linked list is empty (since then itsTop
has the value null):

 Node newNode = new Node ("sam", itsTop);
 itsTop = newNode;

In fact, the push method for a linked list implementation of StackADT only needs one
statement to add ob to the front of the list (the effect is illustrated in Figure 14.4):

 itsTop = new Node (ob, itsTop);

 Figure 14.4 UML object diagrams for stack operations in NodeStack

 Java Au Naturel by William C. Jones 14-16 14-16

The peekTop method is quite straightforward: First you check to make sure the stack
is not empty (otherwise you throw an Exception). If the stack has at least one Node, the
first Node is the top of the stack, so you simply return itsTop.getValue(). This
coding is in the upper part of Listing 14.6 (see below).

The pop method is the most complex of the NodeStack methods: Once you check that
the stack is not empty, you discard the first Node in the linked list, since it contains the
data that you are to remove. This can be done with the following statement:

 itsTop = itsTop.getNext();

That statement stores a reference to the second Node on the list in the itsTop instance
variable. If there was only one Node on the list in the first place, itsTop.getNext()
has the value null, so itsTop is now null, which signals that the stack is empty. The
coding for pop is in the lower part of Listing 14.6.

Internal invariant for NodeStacks
• If the abstract stack is empty, the Node value itsTop is null.
• If the abstract stack is not empty, itsTop refers to the first Node in a linked list of

Nodes and itsTop.getValue() is the top element of the stack.
• If p is any Node in that linked list for which p.getNext() is not null, then the

element p.getNext().getValue() is the element that will be on top of the stack
immediately after popping off the element p.getValue().

• The Nodes of one NodeStack are all different objects from those in any other.

Listing 14.6 The NodeStack class of objects

public class NodeStack implements StackADT
{
 private Node itsTop = null;

 public boolean isEmpty()
 { return itsTop == null;
 } //======================

 public Object peekTop()
 { if (isEmpty())
 throw new IllegalStateException ("stack is empty");
 return itsTop.getValue();
 } //======================

 public Object pop()
 { if (isEmpty())
 throw new IllegalStateException ("stack is empty");
 Node toDiscard = itsTop;
 itsTop = itsTop.getNext();
 return toDiscard.getValue();
 } //======================

 public void push (Object ob)
 { itsTop = new Node (ob, itsTop);
 } //======================
}

 Java Au Naturel by William C. Jones 14-17 14-17

Useful simile The choice between a car and a lawn mower is analogous to the choice
between a stack and a queue. The former depends on whether you want to go
somewhere or mow the lawn; the latter depends on whether you want a LIFO or FIFO
data structure. For the former, you need to know the functions of the various controls
(brake, accelerator, starter); for the latter, you need to know the preconditions and
postconditions of the methods. The driving force of a car or lawn mower can be gasoline
or electricity; correspondingly, the internal invariant of a stack or queue can be a partially-
filled array or a standard linked list. The coding of a method is mostly determined by its
precondition and postcondition plus the internal invariant, just as the construction of a
machine's control is mostly determined by its function plus the driving force.

Implementing queues with linked lists

A linked list is an excellent way to implement QueueADT, as long as you keep track of
both the front and the rear of the list. That way, you can quickly add an element or
remove an element. For this NodeQueue class, begin by declaring two instance
variables itsFront and itsRear, each referring to a Node. In general, the queue's
itsFront will always refer to the Node containing the first data value (if any) and the
queue's itsRear will always refer to the Node containing the last data value (if any).

An empty queue has null for itsFront, since there are no data values and so no
Nodes at all. The isEmpty , dequeue, and peekFront methods are precisely the
same as isEmpty, pop, and peekTop are for NodeStack except of course
itsFront is used in place of itsTop. The implementation so far is in the top part of
Listing 14.7 (see next page). We repeat here the comment descriptions of the methods
so you do not have to refer back to the earlier listing of QueueADT.

The enqueue method

To enqueue a new data value to the end of the queue, you normally create a new Node
attached to the Node referred to by itsRear. Since that new Node is now the last
Node, you change the value of itsRear to refer to the new Node.

However, if the queue is empty, you cannot attach a new Node to the last Node, because
there is no last Node. In that case, you need to have the queue's itsFront refer to
the new Node, because the new Node is the first Node. But you also need to have the
queue's itsRear refer to the new Node, because the new Node is also the last Node.
This coding is in the lower part of Listing 14.7.

Exercise 14.21 Write a method public Object last() that could be added to
NodeQueue: Return the last data value in the queue; return null if the queue is empty.
Exercise 14.22 Write a method public void dup() that could be in NodeStack: The
executor pushes the element that is already on top of the stack (so it now occurs twice).
Throw an Exception if the stack is empty.
Exercise 14.23 Rewrite the enqueue method to execute faster by not assigning the
newly-constructed Node to a local variable, but instead assigning it directly where it goes.
Exercise 14.24 Write a method public int size() that could be added to
NodeQueue: Return the number of elements in the queue.
Exercise 14.25 Write a method public void append (NodeQueue queue) that
could be in NodeQueue: The executor appends queue's elements in the same order
and sets queue to be empty. Precondition: The executor is not empty.
Exercise 14.26 What change would you make in the answer to the previous exercise to
remove the precondition?
Exercise 14.27* Write a method public void swap2and3() that could be added to
NodeStack: The executor swaps the second element with the third element in the stack.
It has no effect if the stack has less than three elements.

 Java Au Naturel by William C. Jones 14-18 14-18

Listing 14.7 The NodeQueue class of objects

public class NodeQueue implements QueueADT
{
 private Node itsFront = null;
 private Node itsRear;

 /** Tell whether the queue has no more elements. */

 public boolean isEmpty()
 { return itsFront == null;
 } //======================

 /** Return the value that dequeue would give without modifying
 * the queue. Throw an Exception if the queue is empty. */

 public Object peekFront()
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 return itsFront.getValue();
 } //======================

 /** Remove and return the value that has been in the queue the
 * most time. Throw an Exception if the queue is empty. */

 public Object dequeue()
 { if (isEmpty())
 throw new IllegalStateException ("queue is empty");
 Node toDiscard = itsFront;
 itsFront = itsFront.getNext();
 return toDiscard.getValue();
 } //======================

 /** Add the given value to the queue. */

 public void enqueue (Object ob)
 { Node toBeAdded = new Node (ob, null);
 if (isEmpty())
 itsFront = toBeAdded;
 else
 itsRear.setNext (toBeAdded);
 itsRear = toBeAdded;
 } //======================
}

Exercise 14.28* Write a NodeStack method public int size(): The executor tells
the number of elements currently on the stack. Also add an instance variable itsSize
to keep track of the current number so size() can be coded as a single statement.
Exercise 14.29* Write a method public Object firstAdded() that could be
added to NodeQueue: The executor tells what was the first element ever added to it,
even if it was removed later. It returns null if the queue has always been empty.
Exercise 14.30* Write out the internal invariant for NodeQueues.

 Java Au Naturel by William C. Jones 14-19 14-19

14.5 The ListADT Abstract Class

We could implement StackADT using inheritance (making a subclass of Node) rather
than composition (making a class of objects that have Node instance variables).
However, it is simpler if we write a revision of the Node class rather than an extension,
because we do not want the setNext() method to be publicly available to other
classes. We will create a class like Node but more powerful -- it includes all four of the
services of StackADT plus several others appropriate to lists.

The ListADT definition

A ListADT object offers client classes two basic services besides the four StackADT
methods. We define ListADT as an abstract class rather than as an interface because
that allows us to provide over a dozen additional convenience methods in the class (i.e.,
methods whose coding can be written using just the basic six methods). A concrete
implementation of ListADT can then override these convenience codings or not,
whichever works best. Any client of any of the various ListADT implementations we will
write can use the convenience methods as needed.

Listing 14.8 shows the essential part of ListADT (postponing the convenience methods).
The method that lets us iterate through the list is a method named theRest. If x is a
non-empty ListADT, x.theRest() is the sublist consisting of the second and all later
data values. For instance, x.theRest().pop() removes the second data element on
x's list. But if x has just one data value, x.theRest() is empty and
x.theRest().theRest() is null.

Listing 14.8 The abstract ListADT class of objects (to be added to later)

public abstract class ListADT implements StackADT
{
 /** Return the portion of this list that contains all values
 * after the first value. Return null if the list is empty.*/

 public abstract ListADT theRest();

 /** Replace the data value at the front of the list by ob.
 * No effect if this list is empty. */

 public abstract void setTop (Object ob);

// The four StackADT methods (descriptions are in Listing 14.1)

 public final boolean isEmpty()
 { return theRest() == null;
 } //======================

 public abstract Object peekTop();

 public abstract Object pop();

 public abstract void push (Object ob);
}

 Java Au Naturel by William C. Jones 14-20 14-20

Your coding can have a semicolon for the body of any instance method as long as you
put "abstract" in each such method heading and also in the class heading. That makes it
an abstract class. You then declare a "concrete" subclass of ListADT that actually has
coding for abstract methods. For the six methods named in Listing 14.8, isEmpty
cannot be overridden (since it is final) and the other five must be overridden (since
they are abstract). The methods in the next listing may be overridden.

Any implementation of ListADT has the responsibility to make sure that two lists cannot
have a sublist in common unless one is a sublist of the other. That is, whenever
x.theRest() == y.theRest(), then x == y. An implementation of ListADT must
also assure that a list cannot be a sublist of itself and that a constructor is provided, with
no parameters, that makes an empty list. These conditions are the contract for ListADT.

But wait! There's more!

We call this the ListADT class because a ListADT object represents a list of data values,
not just a stack of data values. This class has additional methods for changing or finding
out about data values not at the top of the list. For instance, sam.addLast (ob) puts
the data value ob at the end of sam's list, and sam.size() returns the number of
data values currently in the list.

The method call someList.addLast (ob) works as follows: If the list is empty, ob
is added to that list to be its only data value. But if the list is not empty, then the executor
"asks" its direct sublist this.theRest() to add ob to the end of the list. That other
list then goes through the same process as the executor did (inserts ob if empty,
otherwise asks its direct sublist to perform the addLast operation). The coding for the
addLast method is in the upper part of Listing 14.9.

Listing 14.9 The ListADT class of objects, part 2

// public abstract class ListADT, continued

 /** Add the given data value at the end of this list. */

 public void addLast (Object ob)
 { if (this.isEmpty())
 this.push (ob);
 else
 theRest().addLast (ob);
 } //======================

 /** Return the number of data values in this list. */

 public int size()
 { return this.isEmpty() ? 0 : 1 + theRest().size();
 } //======================

 /* These ListADT methods are described in the exercises
 public void clear() // remove all data, leave it empty
 public void copyTo (ListADT par) // insert all at the front
 public void addAll (ListADT par) // append all at its end
 public Object[] toArray (Object[] par) // copy it to an array
 public String toString() // return a String representation */

 Java Au Naturel by William C. Jones 14-21 14-21

Figure 14.5 illustrates this process when the list initially has two data values A and B. It
shows NodeList objects rather than ListADT objects because NodeList is a "concrete"
subclass of ListADT you will see shortly; the NodeList y on the left is an empty list.

Figure 14.5 What addLast does when called with a three-node linked list

We can do things this way because this.theRest() is itself a ListADT object. And
each ListADT object can be asked to perform the addLast operation. A process in
which one object asks another object from the same class to carry out the same process
is called a recursive process. The principle is simple: An instance method of a class
can be called for any object of that class, even if the method call is within the coding of
that instance method.

This kind of recursive logic works when the method is called for the direct sublist of the
executor because that sublist has a shorter list of data values, according to the contract
for ListADT. So eventually the process must end with an empty list, if not sooner.

The method call sam.size() returns the number of data values in the list represented
by sam. This is again a recursive process: If the executor is empty, it knows that the
size of its list is zero; otherwise the size of its list must be 1 more than the size of the rest
of the list. This coding is in the lower part of Listing 14.9. The exercises describe more
ListADT methods and code two of them.

Limits of recursion

Once you develop a moderate level of comfort using recursion, you will often find that it is
easier to develop a recursive logic than to use a loop. However, most recursive logics
can be written with a loop without too much difficulty. For instance, the addLast
method could have been coded this way (pos denotes a particular position in the list):

 public void addLast2 (Object ob)
 { ListADT pos = this;
 while (! pos.isEmpty())
 pos = pos.theRest();
 pos.push (ob);
 } //======================

A method call is "uncompleted" if the runtime system has not yet returned from the
method called. The stack trace for a statement is the list of all the "uncompleted"
method calls that have been executed up to that statement. For instance, if you call the
addLast method initially for a list with three data values, the statement this.push
(ob) will not execute until during the fourth call of addLast; at that point the stack
trace contains four calls of addLast. We say that the last call of addLast (the one
that actually does the pushing) has a recursion level of four.

The software throws a StackOverflowError when recursion goes too deeply. That limit
is typically several thousand on many machines. But in general, logic that can produce a
recursion level of more than a hundred or two should be rewritten to use a loop (as
illustrated above for the addLast method).

 Java Au Naturel by William C. Jones 14-22 14-22

Coding the NodeList subclass of ListADT

We make a subclass of ListADT named NodeList. A NodeList object has the same
internal structure as a Node object, though it has different methods. If it represents a list
with five data values, it will be the first node in a linked list of six nodes, the last node
having no data (so it is called a trailer node). In general, N data values in the list require
N+1 nodes. The first node in the list contains the data that is on top of the stack, the
second node in the list contains the data that will be on top after the first one is popped,
etc. The coding for theRest, peekTop, and setTop follows logically. It is in the
upper part of Listing 14.10 (see below). The default constructor creates an empty list.

You might think that setTop has an effect for an empty list. However, no outside class
can detect any difference from having no effect, and that is all that counts. In a sense, it
is okay to lie if (a) you can be sure of getting away with it and (b) it speeds execution.

The coding for push creates a new node to go between the current first node and
second node (lines 6, 8, 10), copies the data value from the current first node into that
new node (line 7), and then puts ob in the first node (line 9). That makes ob the top
value on the stack. The data value that was originally the top value is now the second
value on the stack, and the data value (if any) that was originally second is now third.

Listing 14.10 The NodeList class of objects

public class NodeList extends ListADT
{
 private Object itsData = null;
 private NodeList itsNext = null;

 public ListADT theRest()
 { return itsNext; //1
 } //======================

 public void setTop (Object ob)
 { itsData = ob; //2
 } //======================

 public Object peekTop()
 { if (itsNext == null) // so it represents an empty list//3
 throw new IllegalStateException ("nothing there"); //4
 return itsData; //5
 } //======================

 public void push (Object ob)
 { NodeList toAdd = new NodeList(); //6
 toAdd.itsData = this.itsData; //7
 toAdd.itsNext = this.itsNext; //8
 this.itsData = ob; //9
 this.itsNext = toAdd; //10
 } //======================

 public Object pop()
 { Object valueToReturn = this.itsData; //11
 NodeList toDiscard = this.itsNext; //12
 this.itsData = toDiscard.itsData; //13
 this.itsNext = toDiscard.itsNext; //14
 toDiscard.itsNext = null; // make this list empty //15
 return valueToReturn; //16
 } //======================
}

 Java Au Naturel by William C. Jones 14-23 14-23

The NodeList class has by default a single constructor with no parameters, which
constructs an empty list.

Coding NodeList's pop method

The pop logic in Listing 14.10 copies both parts of the following node into the executor
node (lines 13 and 14), so it is as if that following node were never there. The link from
the discarded node is erased (line 15) to be sure that two different nodes never link to the
same node. If an outside class retains a reference to the discarded node, it is just one
more empty list. Note that an empty list need not have null data, though it usually does.

If the stack is empty when pop is called, then toDiscard has the value null, so
execution of line 13 will throw a NullPointerException. The specifications for the pop
method only require that some Exception be thrown when the stack is empty, not any
particular kind of Exception. So this coding does what the specifications require.

Similarly, in the NodeStack class of the earlier Listing 14.6, we could save execution time
by eliminating the first two lines of peekTop and pop, since those two if-statements are
redundant. However, we need the if-statement in the peekTop method of Listing 14.10
because return itsData does not throw an Exception when the list is empty.

Note that we can now implement QueueADT as a subclass of NodeList, since addLast,
peekTop, and pop do just what enqueue, peekFront, and dequeue do,
respectively. Such a subclass is called an adapter, since it adapts methods of one class
to implement methods of another class. This is left as an exercise. Later in this chapter
we will discuss other subclasses of ListADT, such as CardList, DoublyLinked, HeaderList,
and ListQueue; the ListQueue implements queues so that addLast works much faster.

A class with the methods pop, push, and peekTop for data values at the front, plus
the equivalent methods addLast, removeLast, and getLast for data values at the
rear (the last two described in the next section), is called a deque (pronounced "deck").

Exercise 14.31 Write a ListADT method public void clear(): The executor
discards all data values on its list, leaving itself empty.
Exercise 14.32 Override the clear method of the preceding exercise with a NodeList
method that executes much faster.
Exercise 14.33 (harder) Write the ListADT method public void copyTo
(ListADT par): The executor adds to the front of the given ListADT all of its data
values in the same order they occur in the executor's list. Precondition: par is not null.
Exercise 14.34* Write the ListADT method public void addAll (ListADT par):
The executor adds all of the data values in par to the end of its own list, in the same
order as they are in par. Call on the copyTo method mentioned in the previous
exercise. Precondition: par is not null.
Exercise 14.35* Write a ListADT constructor public ListADT (Object[] par):
Create a ListADT object whose data values are all the values in the components of the
array, in the same order. It should be an empty list if the parameter has zero
components, and it should throw an Exception if the parameter is null.
Exercise 14.36* Write a ListADT method public Object[] toArray (Object[]
par): The executor returns an array whose components contain all the data values in
the executor's list, in the same order. Return the parameter unless its length is less than
the number of data values in the list, in which case return a newly-created array whose
length is the size of the executor. Throw an Exception if par is null.
Exercise 14.37* Write a class that extends the NodeList class and implements the
QueueADT interface. Write the least amount of coding possible.
Exercise 14.38* Essay question: Explain why a NodeList never represents a circular
linked list and two different NodeList objects cannot have the same theRest value.

 Java Au Naturel by William C. Jones 14-24 14-24

Part B Enrichment And Reinforcement

14.6 Additional Linked List Operations Using Recursion

The Sun standard library interface java.util.List has over twenty different
methods. They are the basis for the ListADT methods described in the preceding section
and in this one. Many of those methods find or modify a value given an index in the list.
Another method searches for the index of a given object.

Using zero-based indexes

A call of sam.remove (4) removes the data value at index 4 in the list, i.e., 4 nodes
past sam. Index values are zero-based, e.g., sam.remove (0) removes the first data
value in the list and sam.remove (1) removes the second data value in the list.

The method call sam.remove (n) removes from sam's list the data value that is n
nodes past sam. This is again a recursive process: If the index is zero, the executor
knows that it must remove the data value it contains, so it performs the pop operation.
If the index is positive, the executor asks the node at the front of the rest of the list to
remove the data value whose index in the sublist is 1 less. For instance, x.remove (2)
calls remove (1) for the node after x, which calls remove (0) for the second node
after x, which pops the data value from that second node after x.

If remove is called with the index negative or larger than size(), theRest will
eventually become null. That causes the expression theRest().remove (index-1)
to throw a NullPointerException. This coding is in the upper part of Listing 14.11.

Listing 14.11 The ListADT class of objects, part 3

// public abstract class ListADT, continued

 /** Remove and return the data value at the given index (zero-
 * based). Throw an Exception if no data is at that index. */

 public Object remove (int index)
 { return index == 0 ? pop() : theRest().remove (index-1); //1
 } //======================

 /** Insert the data value at the given index (zero-based).
 * Throw an Exception if index < 0 or index > size(). */

 public void add (int index, Object ob)
 { if (index == 0) //2
 push (ob); //3
 else //4
 theRest().add (index - 1, ob); //5
 } //======================

 /** Return the last data value in this ListADT.
 * Throw an Exception if the ListADT is empty. */

 public Object getLast()
 { return theRest().isEmpty() ? peekTop() //6
 : theRest().getLast(); //7
 } //======================

 Java Au Naturel by William C. Jones 14-25 14-25

The method call sam.add (n, ob) inserts ob at index n, so that everything that was
originally at index n or higher now has an index 1 larger. This is again a recursive
process. If the coding for add in the middle part of Listing 14.11 is not clear, compare it
carefully with the coding for remove and for addLast. Note that add (0, ob) and
remove (0) are the same as push (ob) and pop().

The getLast() call returns the last data value in the list. The executor looks to see if
theRest is empty, which means that the executor is a list with just one data value,
which is therefore the last data value. If however there is additional data, the executor
asks theRest to return the last data value in its list. So this is again a recursive
process. If the original list is empty, the executor throws a NullPointerException, since
theRest is null. This coding is in the lower part of Listing 14.11.

Searching for the index of a data value

The method call sam.indexOf (ob) returns the index where the data value ob is in
the list. If ob occurs several times in the list, sam.indexOf (ob) returns the index of
the first occurrence. If the data value ob is not in the list at all, the method call returns -1.

In other words, if ob is n nodes past the executor and not in any node in between,
sam.indexOf (ob) returns n. For instance, if ob is the first data value in sam's list,
sam.indexOf (ob) returns zero.

It is easiest to separate this logic into two parts, depending on whether the data value is
null or not. So the indexOf method in the upper part of Listing 14.12 (see next page)
calls one of two different private methods: indexOfNull (0) finds the first index
where null occurs, and indexOf (0, ob) finds the first index where the given non-
null object ob occurs. The zero parameter is the index for the executor. In general,
someNode.indexOfNull (n) tells the zero-based index of null in the original list
when someNode is n nodes past the original node.

The logic of indexOfNull is as follows: If the executor represents the empty list, null
is not a data value in that list, so you return -1 to signal that result. Otherwise, if null is
the data value in the executor node, you return the index of that node in the original list.
In all other cases, you ask the rest of the list for the index of null in the original list (the
node at the front of the rest of the list has index 1 higher in the original list than the
executor had). The search for a non-null data value has almost exactly the same logic
(line 10 differs from line 4, but the rest are the same)

The method call sam.contains (ob) tells whether the list contains the given object
as a data value. Since you also have to allow for null here, it is simplest to find out
whether the indexOf method returns -1 or not. This coding is in the bottom part of
Listing 14.12.

Iterating through a ListADT

Clients of the ListADT class will often want to go through each data value on a list in a
way not already provided by one of the ListADT methods. For instance, if you know that
the objects stored as data are all Integer objects, for which the intValue() method
returns the int equivalent of their values, you can use the following independent recursive
method to find the total of those int values:

 public static int totalValue (ListADT list)
 { return list.isEmpty() ? 0
 : ((Integer) list.peekTop()).intValue()
 + totalValue (list.theRest());
 } //======================

 Java Au Naturel by William C. Jones 14-26 14-26

Listing 14.12 The ListADT class of objects, part 4

// public abstract class ListADT, continued

 /** Return the lowest index where ob occurs.
 * Return -1 if ob does not occur anywhere in the list. */

 public int indexOf (Object ob)
 { return ob == null ? indexOfNull (0) : indexOf (0, ob); //1
 } //======================

 private int indexOfNull (int index)
 { if (isEmpty()) //2
 return -1; //3
 else if (null == peekTop()) //4
 return index; //5
 else //6
 return theRest().indexOfNull (index + 1); //7
 } //======================

 // Precondition: ob is not null.

 private int indexOf (int index, Object ob)
 { if (isEmpty()) //8
 return -1; //9
 else if (ob.equals (peekTop())) //10
 return index; //11
 else //12
 return theRest().indexOf (index + 1, ob); //13
 } //======================

 /** Tell whether the parameter is one of the data values
 * in the list. */

 public boolean contains (Object ob)
 { return indexOf (ob) != -1; //14
 } //======================

 /* These ListADT methods are described in the exercises
 public Object get (int index) // return the data there
 public void setLast (Object ob) // replace the last data
 public void set (int index, Object ob) // replace that data
 public Object removeLast() // remove the last and return it
 public boolean remove (Object ob) // remove it if you can
 public int lastIndexOf (Object ob)
 public boolean equals (ListADT that)
 public String toString()
 public boolean containsAll (ListADT that) */

This recursive logic just says that the sum of the values on an empty list is zero, but the
sum for a non-empty list is the intValue of the first data value plus the sum of the
values for the rest of the list. But you cannot simply append .intValue() to an
Object expression. You have to class cast (Integer) the Object expression to tell the
compiler that the object will be of the Integer subclass type at runtime. And you have to
use parentheses to show the compiler exactly what expression you want to cast.

If a client class has a ListADT object for which each null data value is to be replaced by a
particular value x, the following independent recursive method would work right:

 Java Au Naturel by William C. Jones 14-27 14-27

 public static void replaceNullsBy (ListADT list, Object x)
 { if (! list.isEmpty())
 { if (list.peekTop() == null)
 list.setTop (x);
 replaceNullsBy (list.theRest(), x);
 }
 } //======================

This process could be done non-recursively as follows. Compare the two codings to see
how they differ (both have the precondition that list is not null):

 public static void replaceNullsBy2 (ListADT list, Object x)
 { while (! list.isEmpty())
 { if (list.peekTop() == null)
 list.setTop (x);
 list = list.theRest();
 }
 } //======================

Exercise 14.39 Write a ListADT method public Object get (int index)
recursively: The executor returns the data value at the given index. It throws an
Exception if the index is out of range.
Exercise 14.40 Write a ListADT method public void setLast (Object ob)
recursively: The executor replaces the data value at the end of its list with ob. It throws
an Exception if the list is empty.
Exercise 14.41 Write an independent non-recursive method public static int
numNulls (ListADT list): Return the number of null data values in the list.
Exercise 14.42 (harder) Write a ListADT method public boolean
containsAsSubList (ListADT par) recursively: The executor tells whether par
is some sublist of itself.
Exercise 14.43 (harder) Rewrite public void add (int index, Object ob)
of Listing 14.11 non-recursively. Compare this closely with the recursive version to see
why recursive logic is very often conceptually easier to develop.
Exercise 14.44 (harder) Write a ListADT method public boolean equals
(ListADT that) recursively: The executor tells whether its list contains the same data
values in the same order as in the parameter list. Precondition: No data values are null.
Exercise 14.45* Write a ListADT method public Object removeLast()
recursively: The executor removes the data value at the end of its list and returns it. It
throws an Exception if the list is empty.
Exercise 14.46* Write a ListADT method public void set (int index, Object
ob) recursively: The executor replaces the data value at the given index with ob. It
throws an Exception if the index is negative or greater than size() - 1.
Exercise 14.47* Rewrite the remove method in Listing 14.11 non-recursively.
Exercise 14.48* Rewrite the indexOfNull method in Listing 14.12 non-recursively.
Exercise 14.49* Write a ListADT method public String toString(): The
executor returns the String values of all its data values, in the order they occur in its list,
with "; " after each of them.
Exercise 14.50* Write a ListADT method public boolean containsAll
(ListADT that) recursively using just one statement: The executor tells whether its
list contains all the data values that are in the parameter's list. Call on the contains
method appropriately.
Exercise 14.51** Write a ListADT method public boolean remove (Object ob):
The executor removes the first occurrence of ob in its list. Do not look at any Node
more than once. Return true if ob was in the list; return false if it was not.
Exercise 14.52** Write a ListADT method public int lastIndexOf (Object
ob): The executor returns the index of the last occurrence of ob in its list; the executor
returns -1 if ob is not one of the data values in its list.

 Java Au Naturel by William C. Jones 14-28 14-28

14.7 Sorting And Shuffling With Linked Lists

You often need to work with lists of values that can be ordered using the standard
compareTo method from the Comparable interface. This requires that all the data
values be Comparable and non-null. Moreover, you have to be able to compare any two
of them without causing a ClassCastException. Under these assumptions, you can write
coding to find the smallest data value in a non-empty ListADT named list as follows:

 Comparable smallestSoFar = (Comparable) list.peekTop();
 for (ListADT p = list.theRest(); ! p.isEmpty();
 p = p.theRest())
 { if (smallestSoFar.compareTo (p.peekTop()) > 0)
 smallestSoFar = (Comparable) p.peekTop();
 }

In some situations you want to keep a list of mutually Comparable values in ascending
order (each one larger than or equal to the one before it in the list). This requires that,
when you add a data value to the list, you find the first data value that is larger or equal
and insert your data value just before that data value you found. Of course, if the list is
empty, or if all of the data values already in it are smaller than the one you are inserting,
then you insert your data value at the end of the list.

The insertInOrder method in the upper part of Listing 14.13 accomplishes this task.
If the executor's list is empty, or if your value to insert is not larger than the first value in
the list, the executor pushes your data value at the front of its list; otherwise it asks
theRest to insert it later. Note how similar it is to add in the earlier Listing 14.11.

Listing 14.13 The ListADT class of objects, part 5

// public abstract class ListADT, continued

 /** Add the given value to the list before the first data
 * value that is greater-equal to it, using compareTo.
 * Add it at the end of the list if there is no such value.
 * Precondition: ob is non-null and is Comparable to all
 * data values currently in the list. */

 public void insertInOrder (Comparable ob)
 { if (this.isEmpty() || ob.compareTo (peekTop()) <= 0)
 this.push (ob);
 else
 theRest().insertInOrder (ob);
 } //======================

 /** Rearrange the data values to be in ascending order. Throw
 * an Exception unless all values are mutually Comparable. */

 public void insertionSort()
 { if (! this.isEmpty())
 { theRest().insertionSort();
 this.insertInOrder ((Comparable) this.pop());
 }
 } //======================

 Java Au Naturel by William C. Jones 14-29 14-29

You can use this insertInOrder method to sort all of the data values on an existing
ListADT in ascending order. The basic logic, called the Insertion Sort logic, is in the
lower part of Listing 14.13: To sort a non-empty list, first sort the sublist consisting of all
the values after the first one, then pop the first one off the list and insert it where it goes.

Figure 14.6 Sorting a linked list

Another logic for sorting values in ascending order finds the smallest value in the list,
removes it, pushes it on the front of the list, and then sorts the rest of the list. This is
called the Selection Sort logic. The removeSmallest method is an exercise:

 public void selectionSort()
 { if (! this.isEmpty())
 { this.push (this.removeSmallest());
 theRest().selectionSort();
 }
 } //======================

These sorting logics execute rather slowly for more than several hundred values.
Moreover, recursive processes that run more than a thousand deep tend to fail due to
RAM limitations (it varies from 1000 to 10,000 or more, depending on the computer).
Algorithms that avoid both of these problems are presented in another chapter.

An application using NodeLists

Assume you have a client who spends a lot of time playing this simple Solitaire game:

1. Use a standard 52-card deck -- thirteen different ranks of cards with four cards of

each rank, e.g., 4 of clubs, 4 of spades, 4 of hearts, and 4 of diamonds.
2. Shuffle the cards and spread them out in sequence face up.
3. Remove any two adjacent cards of the same suit or of the same rank.
4. Repeat the step above until all cards are removed (so you win) or you cannot remove

two adjacent cards (so you lose).

For instance, if playing the game reduces the deck to four cards in the order 4 of clubs, 5
of clubs, 5 of spades, 4 of hearts, it is illegal to remove the last pair. Removing the first
pair (two clubs) leaves the 5 of spades and 4 of hearts, which loses; but removing the
middle pair (two 5s) leaves the 4 of clubs and 4 of hearts, which wins. The client wants
to know (and is willing to pay you to find out) the probability of winning the game if one
always removes the first pair in the display that can be removed.

You decide to use the Monte Carlo method to find the probability: Play the game for
maybe 10,000 random arrangements of cards and estimate the theoretical probability of
winning to be the actual number of wins divided by 10,000. If you have say 100,000 or
more test runs, the estimate will be more accurate, but you decide the client is not paying
you enough for that.

So you design a class of objects that represent Cards, with these instance methods:

 someCard.getSuit() tells which suit the Card is in.
 someCard.getRank() tells which numeric rank the Card has (e.g., 13 for a King).

 Java Au Naturel by William C. Jones 14-30 14-30

You decide to represent a deck of cards in a particular order with a CardList, which you
make a subclass of NodeList. Each of its data values is a Card object. In designing this
object class, you decide it should offer the following services to outside classes:

 public void shuffleAllCards (int numToDo) puts them in random
 order if numToDo is the number of Cards in the list
 public boolean removeAllSucceeds() tells whether you win the game by
 removing the first available pair of cards each time

Implementing the CardList class

To shuffleAllCards for 52 cards, you only need to pick a random number 0 up to
but not including 52, remove the card at that (zero-based) index, put that card at the front
of the deck, and then shuffle the remaining 51 cards the same way. This logic can be
coded as shown in the upper part of Listing 14.14 (see next page).

To find out whether removeAllSucceeds, you first see if this list is empty (in which
case it succeeds). If not, you try to remove the first legally-removable pair of Cards. If
you do not succeed in doing so, then return false from removeAllSucceeds, otherwise
find out whether removeAllSucceeds for the list that has now been shortened by two
cards. This recursive logic is in the middle part of Listing 14.14.

The logic for removeTheFirstSucceeds is more complex. After a moderate amount
of thought, you come up with the algorithm design in the following design block. Once
you have this design, the coding in the lower part of Listing 14.14 then follows easily.

STRUCTURED NATURAL LANGUAGE DESIGN for removeTheFirstSucceeds
1. If the list has less than two Cards then...
 You cannot legally remove any pair of cards, so return false.
2. If the first two cards have either the same rank or the same suit then...
 Remove those two cards from the deck.
 Return true.
3. Apply the process just described to the part of the list after the first card.

Personal confession: I thought I was so competent that I could just write the code for this
method directly, doing the design in my head. Some time later I wrote out the design
block for this book. Only then did I realize that my code had a bug. I could not see the
bug when the logic was written in Java, but it was clear when the logic was written in
English. This just goes to confirm a basic programming fact: First write out the design in
English to greatly reduce both the number of errors you need to find later and the total
development time for error-free coding.

Exercise 14.53 (harder) Write a ListADT method public Object
removeSmallest(): The executor removes and returns the smallest data value in its
list. Precondition: The list is not empty and all data values are mutually Comparable.
Exercise 14.54 (harder) Write a ListADT method public Object findLargest():
The executor returns the largest data value in its list. Precondition: The list is not empty
and all data values in the list are mutually Comparable.
Exercise 14.55* Write a ListADT method public void swapSmallest(): The
executor swaps its first data value with its smallest data (put each in the other's node).
Revise the selectionSort method to use this method appropriately.
Exercise 14.56* Write a ListADT method public void removeAbove (Object
ob): The executor removes all data values from its list that are larger than ob.
Precondition: All data values including ob are mutually Comparable.

 Java Au Naturel by William C. Jones 14-31 14-31

Listing 14.14 The most interesting part of the CardList class of objects

public class CardList extends NodeList
{
 private java.util.Random randy = new java.util.Random();

 /** Put the numToDo data values in a random order.
 * Throw an Exception if numToDo > this.size(). */

 public void shuffleAllCards (int numToDo)
 { ListADT list = this; //1
 for (; numToDo >= 2; numToDo--) //2
 { list.push (list.remove (randy.nextInt (numToDo))); //3
 list = list.theRest(); //4
 } //5
 } //======================

 /** Repeatedly remove the first legally-removable pair of
 * cards. Return true if this leaves the list empty, false
 * if not. Precondition: All data values are Card objects. */

 public boolean removeAllSucceeds()
 { return this.isEmpty() || (removeTheFirstSucceeds (this)//6
 && this.removeAllSucceeds());//7
 } //======================

 /** Remove the first legally-removable pair of cards from list
 * if you can. Return false if there is no legal move. */

 private boolean removeTheFirstSucceeds (ListADT list)
 { if (list.theRest().isEmpty()) //positioned at last card//8
 return false; //9
 Card first = (Card) list.peekTop(); //10
 Card second = (Card) list.theRest().peekTop(); //11
 if (first.getRank() == second.getRank() //12
 || first.getSuit() == second.getSuit()) //13
 { list.pop(); //14
 list.pop(); //15
 return true; //16
 } //17
 return removeTheFirstSucceeds (list.theRest()); //18
 } //======================
}

Exercise 14.57* Write a ListADT method public boolean isAscending(): The
executor tells whether all of its list's data values are in ascending order. Precondition:
The list is not empty and all data values are mutually Comparable.
Exercise 14.58** Write a ListADT method public void bubbleSort(): The
executor rearranges the data values to be in ascending order by leaving most of the work
to the method in the following exercise.
Exercise 14.59** Write a ListADT method public void bubble(): The executor
goes through the list in order, swapping any two adjacent data values for which the first is
larger than the second. This is a slow way to get the largest value moved to the rear.
Precondition: All data values are mutually Comparable.

 Java Au Naturel by William C. Jones 14-32 14-32

14.8 Doubly-Linked Lists And Lists With Header Nodes

Sometimes we want to move from a certain position in a list to the position just before it.
We would like to be able to use a method call such as someList.theOneBefore(),
which would be the opposite of someList.theRest(). In other words, the following
two conditions would be true whenever someList is non-empty and is a sublist of
another list:

 someList == someList.theOneBefore().theRest();
 someList == someList.theRest().theOneBefore();

We cannot do this with NodeLists -- there is no way for a given NodeList object to be able
to tell you the list that it is part of. We can fix this by making a different subclass of
ListADT objects, each one knowing the list it is theRest of. We will call this the
DoublyLinked class, because each node is generally linked to two nodes.

Coding the DoublyLinked class

It is fairly obvious that this subclass should have one extra instance variable for each
DoublyLinked object to keep track of the DoublyLinked object for which it is theRest.
We call it itsPrevious. We store null in this itsPrevious variable if the object is
not theRest for any list. A Node that represents an empty list should have null for both
linkages, since there is no node before or after it. The instance method theOneBefore
returns the list for which the executor is theRest. It return null if there is no such
containing list. This coding is in the upper part of Listing 14.15 (see next page).

The DoublyLinked coding for push is in the middle part of Listing 14.15. It has exactly
the same five statements (lines 2-6) that NodeList's push has, except of course for the
type of the toAdd variable. Then it corrects the itsPrevious values for the two
nodes that are affected (lines 7-9). Specifically, the node after toAdd links back to
toAdd and toAdd links back to the executor.

The pop method has exactly the same six statements that NodeList's pop has (lines
10-14 and 18), but we add line 15 to make the deleted node empty, and we add lines 16
and 17 to have the node after the one deleted (if any) refer back to the executor instead
of to the deleted node. The class cast in lines 9 and 17 is needed because (a) theRest
is declared to return a ListADT value but we know that the value returned is in fact a
DoublyLinked value, and (b) we cannot use itsPrevious with a ListADT expression.

Backing structures

Note that if you have ListADT objects x and rest where rest == x.theRest(),
whether x is a DoublyLinked or NodeList, then x.pop() changes rest to represent
an empty list. This is because x and rest are backed by the same list, and any
change in x or rest causes a change in the backing list. However, x.push() does
not change the essential nature of any other ListADT object y -- y.peekTop() and
y.theRest() remain as they were before the push operation.

In the Sun standard library of utilities, an Iterator is similar to what we are working with.
The standard library is stricter -- any attempt to use an Iterator object after any change is
made in its backing list by another Iterator object will throw an Exception. This is called
the fail-fast principle.

 Java Au Naturel by William C. Jones 14-33 14-33

Listing 14.15 The DoublyLinked class of objects

public class DoublyLinked extends ListADT
{
 private Object itsData = null;
 private DoublyLinked itsNext = null;
 private DoublyLinked itsPrevious = null;

 /** Return the DoublyLinked object for which theRest is this
 * list, if any. But return null if there is no such list. */

 public DoublyLinked theOneBefore()
 { return itsPrevious; //1
 } //======================

 public void push (Object ob)
 { DoublyLinked toAdd = new DoublyLinked(); //2
 toAdd.itsData = this.itsData; //3
 toAdd.itsNext = this.itsNext; //4
 this.itsData = ob; //5
 this.itsNext = toAdd; //6
 toAdd.itsPrevious = this; //7
 if (toAdd.theRest() != null) //8
 ((DoublyLinked)toAdd.theRest()).itsPrevious = toAdd;//9
 } //======================

 public Object pop()
 { Object valueToReturn = this.itsData; //10
 DoublyLinked toDiscard = this.itsNext; //11
 this.itsData = toDiscard.itsData; //12
 this.itsNext = toDiscard.itsNext; //13
 toDiscard.itsNext = null; // make this list empty //14
 toDiscard.itsPrevious = null; //15
 if (this.theRest() != null) //16
 ((DoublyLinked) this.theRest()).itsPrevious = this; //17
 return valueToReturn; //18
 } //======================

 // The following 3 methods are coded the same as for NodeList
 public ListADT theRest()
 public Object peekTop()
 public void setTop (Object ob)
}

Linked lists with header nodes

An irritating thing about a linked list with a trailer node is that, when you push a value at
a particular node position, you have to first copy that node's data into the new node that
you put after the current node. If you could just put the new data in the new node, that
would save one assignment statement. And when you pop a value, you have to copy
into the current node the data value from the node to discard; you could save two
assignment statements if you could just return the data value in that discarded node.

The standard solution for this situation is to put every data value one node later in the
linked list of nodes than the way we have been doing it. For instance, a NodeList with
three data values A, B, C stores them in the first, second, and third nodes, with nothing in
particular in the fourth node. Instead, we will put A in the second node, B in the third

 Java Au Naturel by William C. Jones 14-34 14-34

node, C in the fourth node, and nothing in particular (usually null) in the first node. The
first node is then called a header node, since it is not a data-containing node and the
rest are.

We will create a subclass of ListADT using this "more efficient" implementation and call it
HeaderList. The coding for theRest is the same as in NodeList and DoublyLinked.
But when an outside class calls the peekTop method for a HeaderList node, we have to
return the data in the following node. Similarly, a call of HeaderList's setTop method
by outside classes should put the data in the following node, but have no effect if there is
no following node. These three methods are coded in the upper part of Listing 14.16.

You should compare the coding for push in the middle part of Listing 14.16 with the
push coding for NodeList (which is repeated here for your convenience). The
statements that are different are noted in comments:

 public void push (Object ob) // for the NodeList class
 { NodeList toAdd = new NodeList(); // equivalent to line 5
 toAdd.itsData = this.itsData; // copied from other node
 toAdd.itsNext = this.itsNext; // same as line 7
 this.itsData = ob; // stored in current node
 this.itsNext = toAdd; // same as line 8
 } //======================

Listing 14.16 The HeaderList class of objects

public class HeaderList extends ListADT
{
 private Object itsData = null;
 private HeaderList itsNext = null;

 public ListADT theRest()
 { return itsNext; //1
 } //======================

 public Object peekTop() // throws Exception if empty
 { return itsNext.itsData; //2
 } //======================

 public void setTop (Object ob)
 { if (itsNext != null) //3
 itsNext.itsData = ob; //4
 } //======================

 public void push (Object ob)
 { HeaderList toAdd = new HeaderList(); //5
 toAdd.itsData = ob; //6
 toAdd.itsNext = this.itsNext; //7
 this.itsNext = toAdd; //8
 } //======================

 public Object pop()
 { HeaderList toDiscard = this.itsNext; //9
 this.itsNext = toDiscard.itsNext; //10
 toDiscard.itsNext = null; // make this list empty //11
 return toDiscard.itsData; //12
 } //======================
}

 Java Au Naturel by William C. Jones 14-35 14-35

A similar comparison shows that NodeList's pop has exactly the same four statements
as HeaderList's pop, plus two additional assignments, so the coding for pop saves two
assignments. However, every use of peekTop or setTop for a HeaderList object
costs an extra referencing operation, and methods that progress through the list may use
peekTop at every node. So perhaps the header node implementation executes more
slowly than the trailer node implementation overall, for most software that uses ListADTs.
Figure 14.6 shows the relations of the various classes so far that implement StackADT
using Nodes.

Figure 14.7 UML class diagrams for various implementations of StackADT

Further variations

If you use a ListADT to implement QueueADT and have enqueue call the addLast
method, it has to go through all the nodes to get to the end. This can take a long time.
But if you define a ListQueue subclass of HeaderList that stores in the data part of the
header node a reference to the last node in the linked list, you can perform an enqueue
operation extremely quickly, regardless of how many data values are in the list.
ListQueue requires adding two more methods to the HeaderList class to allow access to
the data part of the header node. This is left as a major programming project.

The hallmark of the ListADT class is the theRest method, which returns a sublist of the
executor. Any change to the sublist causes the corresponding change in the executor's
list. You might think that this capability forces you to have a linked list. But all the
methods of ListADT can be implemented using a partially-filled array. Specifically, the
analogue of a ListADT object would have two instance variables, one an object
containing an array plus its size, the other keeping track of the current index in that array.
Then theRest would return a new object with the same array/size object value but a
different index. This is left as a major programming project.

Technical note You could simply make DoublyLinked a subclass of NodeList if the
phrase new NodeList() in NodeList's push method produced a new DoublyLinked
object rather than a NodeList object. But you can get the same effect if you replace that
phrase by the following (using reflection): this.getClass().getInstance().

Exercise 14.60 Write coding that swaps the data value in a DoublyLinked object named
sam with the data value in the node before it, as long as both data values exist.
Exercise 14.61* Essay question: Since theRest, setTop, and peekTop are
coded the same in both NodeList and DoublyLinked, why is it you cannot put them in a
common superclass instead of having the duplication?
Exercise 14.62* Say you have a NodeList X with 6 data values, A,B,C,D,E,F in that
order. Say you have four sublists cSub = X.theRest().theRest(), dSub = cSub.theRest(),
eSub = dSub.theRest(), and fSub = eSub.theRest(). (a) What is the effect of dSub.pop()
on each of the four sublists? (b) What is the effect of dSub.push(M) on each of the four
sublists? (c) & (d) Same two questions except for HeaderList. Now maybe you can see
why the Sun standard library specifies that this sort of thing is to throw an Exception.
Exercise 14.63** Revise DoublyLinked to be a subclass of NodeList by adding and
using an instance method cons that in each class should return a newly-created node
of that subclass type. How can you guarantee that each subclass of NodeList that
overrides cons does not have it return a node that is already linked from some other
node?

 Java Au Naturel by William C. Jones 14-36 14-36

14.9 Applications: Josephus And The Many-Colored WebLinks

Modern personal computers use timeslicing: The user has several tasks going at the
same time (usually with one active window per task, some of which may be showing on
the monitor). The computer keeps all active tasks on a list. It gives a small amount of
time to one task, then to the next task, then the next, and so on. It circles around to the
original task when it finishes the last one.

The most convenient way to store the active tasks is in a circular list -- when you are at
the last task and move on, you move on to the first task. In fact, it is not even necessary
to have a "first task" and a "last task"; you just have a circle of tasks.

We could define a subclass of ListADT for which repetitions of x = x.getRest()
never produce an empty list (so it could loop forever). But then it would not obey the
semantics of StackADT (i.e., the meanings of the methods), even though it has the form
required. Instead, we illustrate how to use a regular NodeList object to solve problems
involving true circular lists, at only a small sacrifice in speed.

The Josephus Problem

The Josephus problem is a famous problem in algorithm design. It can best be explained
as the solution to one-potato-two-potato: Children sometimes choose which of them is to
be given a prize by what they think is a random process: They stand in a circle and
count, "1 potato, 2 potato, 3 potato, 4; 5 potato, 6 potato, 7 potato, more; Y-O-U spells
you!". This is a count of 13 around the circle. Then they eliminate the child it ends on.
This is repeated until only one child is left, which is the child who gets the prize.

All you need do is create a Josephus object sam and add virtual children to it. Then the
following statement prints the winner. Study the coding in Listing 14.17 to make sure you
understand how it directly implements the algorithm sketched in the preceding paragraph.

 System.out.println (sam.josephus (13));

Listing 14.17 The JosephusList class of objects

public class JosephusList extends NodeList
{
 /** Remove every nth one circularly until only one is left.
 * Return that one. Precondition: The list is not empty. */

 public Object josephus (int numToCount)
 { ListADT circle = this;
 while (! this.theRest().isEmpty()) // more than 1 left
 circle = popAfterGoingForward (circle, numToCount);
 return this.peekTop();
 } //======================

 private ListADT popAfterGoingForward (ListADT circle, int num)
 { for (int k = 0; k < num; k++)
 { circle = circle.theRest();
 if (circle.isEmpty())
 circle = this;
 }
 circle.pop();
 return circle;
 } //======================
}

 Java Au Naturel by William C. Jones 14-37 14-37

The web-link problem

A customer asks you to develop part of the software used to maintain an internet search
engine. Your software is to roam the worldwide web and store information about which
http links are on which pages. The client categorizes the webpages by their background
colors, with a different non-negative integer value for each background color. Your
software is to be able to accept a given color category, webpage, and http link and store
that information. And it must be able to list all webpages found for a given color category,
each with its own sublist of the http links on that page.

You design a WebData class of objects to have the following public methods:

 new WebData (int numCategories) // construct an object that keeps one
 // list of page/link associations for each of numCategories color categories.
 void addLink (int category, Object page, Object link)
 // add that one page/link association to the data base for that category.
 void listAll (int category) // list all page/link associations for the category.

For the internal design of the WebData class, it is appropriate to use an array of linked
lists, one for each category. An array allows very fast access to the correct list. You then
design a WebList class of linked list objects to have the following public methods:

 void addLink (Object page, Object link)
 // add that one page/link association to the executor's list of associations.
 void listAll() // print all page/link associations in the executor's list.

This design so far makes it very easy to code the WebData class, calling on WebList
methods as needed. Listing 14.18 has this coding, minus listAll (left as an exercise).

Listing 14.18 The WebData class of objects, partially done

public class WebData
{
 public final int MAX;
 private WebList[] itsItem;

 public WebData (int numCategories)
 { MAX = (numCategories > 0) ? numCategories : 1;
 itsItem = new WebList [MAX];
 for (int k = 0; k < MAX; k++)
 itsItem[k] = new WebList();
 } //======================

 /** Add the given page/link association of the given category.
 * Ignore any category outside of the range 0..MAX-1. */

 public void addLink (int category, Object page, Object link)
 { if (page != null && category >= 0 && category < MAX)
 itsItem[category].addLink (page, link);
 } //======================
}

The WebList class

Further discussion with the client tells you that the information sent to a WebData object
usually has several consecutive associations with the same page value, because the
search of one particular page may yield half-a-dozen http links on it, producing half-a-
dozen addLink calls in a row with the same page value.

 Java Au Naturel by William C. Jones 14-38 14-38

Each WebList object (one per color category) contains many NodeLists of http links, one
NodeList per page. To make it easy to tell which NodeList is for which page, you could
store the page at the front of the NodeList and then all its http links after it. You decide to
have each WebList object store in an instance variable itsPrior the NodeList for the
page most recently retrieved from it. Initially, the NodeList value a WebList stores is
assigned null, because no one has yet retrieved anything from it. The accompanying
design block then provides a reasonable algorithm for the addLink method.

STRUCTURED NATURAL LANGUAGE DESIGN for WebList's addLink
1. Let itsPrior denote the most recently retrieved item on this WebList.
2. If itsPrior is null or its first data value is not the given page then...
 Assign to itsPrior the NodeList for the given page, creating it if need be.
3. Insert the given http link second on the itsPrior list (since the given page is first).

The coding for the WebList class is in Listing 14.19 minus the listAll method, which
is left as an exercise. Note that what we have for this software is an array of linked lists
(WebLists) of data values, each data value being a linked list (a NodeList) of links.
Interesting, isn't it?

Listing 14.19 The WebList class of objects

/** A WebList contains zero or more non-empty NodeList objects.
 * itsPrior is a reference to one of them if not null. Each of
 * those NodeLists contains 1 web page followed by its links. */

public class WebList extends NodeList
{
 private ListADT itsPrior = null;

 public void addLink (Object page, Object link)
 { if (itsPrior == null || ! itsPrior.peekTop().equals (page))
 itsPrior = findMatchEvenIfYouHaveToMakeIt (page);
 itsPrior.theRest().push (link); // push after the page
 } //======================

 private ListADT findMatchEvenIfYouHaveToMakeIt (Object page)
 { ListADT pos = this;
 for (; ! pos.isEmpty(); pos = pos.theRest())
 { if (((ListADT) pos.peekTop()).peekTop().equals (page))
 return (ListADT) pos.peekTop();
 }
 ListADT toAdd = new NodeList();
 toAdd.push (page);
 pos.push (toAdd); // putting it at the end of this WebList
 return toAdd;
 } //======================
}

Exercise 14.64 Write the WebData method public void listAll (int
category).
Exercise 14.65* Write the WebList method public void listAll().

 Java Au Naturel by William C. Jones 14-39 14-39

14.10 About Stack And Vector (*Sun Library)

The java.util.Vector class was the original class designed by Sun Microsystems, Inc., to
create and modify a collection of Objects. It has been replaced by ArrayList, and its use
is now discouraged. Programmers are strongly encouraged to use ArrayList or
something else from the Collection or Map hierarchy in new software they write, but
Vector will be retained in the Sun standard library so that existing software will continue
to function correctly.

You should be aware of the Vector class because, if you find occasion to maintain older
software written in Java, you will often find it using the Vector class. Vector has been
"retrofitted" to have all of the methods required by the List interface. But it still provides
the following antiquated methods in additon (indexes are zero-based):

• new Vector() creates an empty Vector.
• new Vector(someInt) creates an empty Vector with a capacity of someInt.

The capacity will increase if enough elements are added to the Vector.
• someVector.size() is the number of elements actually in the Vector.
• someVector.elementAt(indexInt) is get(indexInt).
• someVector.setElementAt(ob, indexInt) replaces the element at the given

index with ob. It throws an Exception if the index is negative or greater than
size() - 1.

• someVector.addElement(ob) adds ob to the end of the list.
• someVector.removeElementAt(indexInt) is remove(indexInt).
• someVector.removeAllElements() is clear().
• someVector.insertElementAt(ob, indexInt) is add(indexInt, ob).
• someVector.firstElement() returns the element at index 0.
• someVector.lastElement() returns the element at index

someVector.size()-1.
• someVector.ensureCapacity(maxCapacity) extends the underlying array, if

necessary, to have at least maxCapacity components.
• someVector.elements() returns an Enumeration object, which is the earlier

version of Iterator (described in Chapter 15).

Stack objects (from java.util)

The Stack class is a subclass of Vector. It has the following methods. Both pop and
peek throw a java.util.EmptyStackException if the Stack is empty:

• new Stack() creates an empty Stack.
• someStack.push(someObject) adds the object to the top of the Stack.
• someStack.pop() removes and returns the object on top of the Stack.
• someStack.peek() returns the object that is on top of the Stack.
• someStack.empty() tells whether the stack contains no objects.
• someStack.search(someObject) returns 1 if the object is on top, 2 if it is

second, 3 if it is third, etc. It returns -1 if the object is not in the Stack.

 Java Au Naturel by William C. Jones 14-40 14-40

14.11 Review Of Chapter Fourteen

Ø Stacks and queues are data structures that allow you to add an element, remove a

particular element, see if they are empty, or see what you would get if you removed
an element. The particular element you get depends on the structure: A stack gives
you the element that has been there the shortest period of time, and a queue gives
you the element that has been there the longest period of time.

Ø This book defines two similar interfaces, both with an isEmpty() method plus a
method to add an element, a method to remove the required element, and a method
to see what element would be removed. The StackADT interface has methods
push(ob), pop(), and peekTop(). The QueueADT interface has methods
enqueue(ob), dequeue(), and peekFront().

Ø Postfix algebraic notation puts each binary operator directly after the two operands.
As a consequence, it is never necessary to parenthesize the expression; a legal
postfix expression can only be interpreted in one way. Evaluation of a postfix
expression is most easily done with a stack.

Ø Efficiency is a composite of space (RAM usage), time (speed of execution), and
effort (the work the programmer does to develop and maintain the coding).

Ø This chapter defined two StackADT implementations, ArrayStack and NodeStack. It
also defined two QueueADT implementations, ArrayQueue and NodeQueue.

Ø A list structure allows you to inspect the elements at any position in the list. Most list
structures also allow you to add or remove elements at any position. This chapter
presents several ways of implementing the ListADT interface. Its hallmark is a
method call theRest which returns, for any non-empty list, the sublist containing all
its elements except the first. We can add to it the capability to move backwards in
the list if we use a doubly-linked list.

Answers to Selected Exercises

14.1 public static Object removeSecond (StackADT stack)
 { if (stack.isEmpty())
 return null;
 Object first = stack.pop();
 Object valueToReturn = stack.isEmpty() ? null : stack.pop();
 stack.push (first);
 return valueToReturn;
 }
14.2 The values are (12 / (10 - (3 + 5))) = 6 and (((5 - 4) - ((3 - 2) - 1)) = 1.
14.3 public static void removeDownTo (StackADT stack, Object ob)
 { if (ob == null)
 { while (! stack.isEmpty() && stack.peekTop() != null)
 stack.pop();
 }
 else
 { while (! stack.isEmpty() && ! ob.equals (stack.peekTop())) // not the opposite order
 stack.pop();
 }
 }
14.4 public static Object removeSecond (QueueADT queue)
 { Object firstOne = queue.dequeue();
 Object valueToReturn = queue.dequeue();
 Object endMarker = new Double (0.0); // anything brand-new works here
 queue.enqueue (endMarker);
 queue.enqueue (firstOne);
 while (queue.peekFront() != endMarker) // you cannot use the .equals test here
 queue.enqueue (queue.dequeue());
 queue.dequeue(); // remove the endMarker, so firstOne is now at the front
 return valueToReturn;
 }

 Java Au Naturel by William C. Jones 14-41 14-41

14.9 The declaration of itsTop should be: private int itsTop = -1;
 Replace itsSize by itsTop+1 everywhere else in the coding except where you apply ++ or --.
14.10 public boolean equals (Object ob)
 { if ((! (ob instanceof ArrayStack)) || (this.itsSize != ((ArrayStack) ob).itsSize))
 return false;
 ArrayStack given = (ArrayStack) ob; // for efficiency
 for (int k = 0; k < this.itsSize; k++)
 { if (! this.itsItem[k].equals (given.itsItem[k]))
 return false;
 }
 return true;
 }
14.13 public int size()
 { return itsRear - itsFront + 1;
 }
14.14 public String toString()
 { String valueToReturn = "";
 for (int k = itsFront; k <= itsRear; k++)
 valueToReturn += '\t' + itsItem[k]; // uses toString() if not null, "null" if it is null
 return valueToReturn;
 }
14.15 public void removeAfter (Object ob)
 { int spot = itsRear; // we will set spot to the location of ob in the queue, if ob is there
 if (ob == null)
 { while (spot >= itsFront && itsItem[spot] != null)
 spot--;
 }
 else
 { while (spot >= itsFront && ! ob.equals (itsItem[spot]))
 spot--;
 }
 if (spot >= itsFront) // then spot is the last location of ob in the queue
 itsRear = spot; // no need to actually erase the deleted values
 }
14.21 public Object last()
 { return isEmpty() ? null : itsRear.getValue();
 }
14.22 public void dup()
 { if (isEmpty())
 throw new IllegalStateException ("stack is empty");
 itsTop = new Node (itsTop.getValue(), itsTop);
 }
14.23 public void enqueue (Object ob)
 { if (isEmpty())
 { itsFront = new Node (ob, null);
 itsRear = itsFront;
 }
 else
 { itsRear.setNext (new Node (ob, null));
 itsRear = itsRear.getNext();
 }
 }
14.24 public int size()
 { int count = 0;
 for (Node p = itsFront; p != null; p = p.getNext())
 count++;
 return count;
 }
14.25 public void append (NodeQueue queue)
 { if (queue.isEmpty())
 return;
 this.itsRear.setNext (queue.itsFront);
 this.itsRear = queue.itsRear;
 queue.itsFront = null;
 }
14.26 Insert after the return statement in the preceding method coding these 3 lines:
 if (this.isEmpty())
 this.itsFront = queue.itsFront;
 else
14.31 public void clear() // in ListADT
 { while (! isEmpty())
 pop();
 }

 Java Au Naturel by William C. Jones 14-42 14-42

14.32 public void clear() // in NodeList
 { itsNext = null;
 }
14.33 public void copyTo (ListADT par) // in ListADT
 { if (! this.isEmpty())
 { par.push (this.peekTop ());
 this.theRest().copyTo (par.theRest());
 }
 }
14.39 public Object get (int index)
 { return (index == 0) ? peekTop() : theRest().get (index - 1);
 }
14.40 public void setLast (Object ob)
 { if (theRest().isEmpty())
 setTop (ob);
 else
 theRest().setLast (ob);
 }
14.41 public static int numNulls (ListADT list)
 { int count = 0;
 for (; ! list.isEmpty(); list = list.theRest())
 { if (list.peekTop() == null)
 count++;
 }
 return count;
 }
14.42 public boolean containsAsSublist (ListADT par)
 { return this == par || (! this.isEmpty() && this.theRest().containsAsSublist (par));
 }
14.43 public void add (int index, Object ob)
 { if (index < 0)
 throw new IndexOutOfBoundsException ("index cannot be negative");
 ListADT position = this;
 for (; index > 0; index--)
 position = position.theRest();
 position.push (ob); // throws an Exception if index > size()
 }
14.44 public boolean equals (ListADT that)
 { if (this.isEmpty())
 return that.isEmpty(); // i.e., both are empty
 else if (that.isEmpty())
 return false;
 else
 return this.peekTop().equals (that.peekTop())
 && this.theRest().equals (that.theRest());
 }
14.53 public Object removeSmallest()
 { Comparable smallestSoFar = (Comparable) this.peekTop();
 ListADT spot = this;
 for (ListADT p = this.theRest(); ! p.isEmpty(); p = p.theRest())
 { if (smallestSoFar.compareTo (p.peekTop()) > 0)
 { smallestSoFar = (Comparable) p.peekTop();
 spot = p;
 }
 }
 return spot.pop(); // which is in fact smallestSoFar
 }
14.54 Code findLargest the same as removeSmallest in the preceding exercise except:
 (a) remove the two statements that assign a value to spot.
 (b) change the last statement to return largestSoFar.
 (c) rename smallestSoFar as largestSoFar and change "> 0" to "< 0".
14.60 if (sam.isEmpty() || sam.theOneBefore() == null)
 return;
 Object saved = sam.peekTop();
 sam.setTop (sam.theOneBefore().peekTop());
 sam.theOneBefore().setTop (saved);
14.64 public void listAll (int category)
 { if (category >= 0 && category < itsItem.length)
 itsItem[category].listAll();
 }

